Drake
Collaboration diagram for Estimators:

## Classes

class  LuenbergerObserver< T >
A simple state observer for a dynamical system of the form:

$\dot{x} = f(x,u)$

$y = g(x,u)$

the observer dynamics takes the form

$\dot{\hat{x}} = f(\hat{x},u) + L(y - g(\hat{x},u))$

where $$\hat{x}$$ is the estimated state of the original system. More...

## Functions

Eigen::MatrixXd SteadyStateKalmanFilter (const Eigen::Ref< const Eigen::MatrixXd > &A, const Eigen::Ref< const Eigen::MatrixXd > &C, const Eigen::Ref< const Eigen::MatrixXd > &W, const Eigen::Ref< const Eigen::MatrixXd > &V)
Computes the optimal observer gain, L, for the linear system defined by

$\dot{x} = Ax + Bu + w,$

$y = Cx + Du + v.$

The resulting observer is of the form

$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x} - Du).$

The process noise, w, and the measurement noise, v, are assumed to be iid mean-zero Gaussian. More...

std::unique_ptr< LuenbergerObserver< double > > SteadyStateKalmanFilter (std::unique_ptr< LinearSystem< double >> system, const Eigen::Ref< const Eigen::MatrixXd > &W, const Eigen::Ref< const Eigen::MatrixXd > &V)
Creates a Luenberger observer system using the optimal steady-state Kalman filter gain matrix, L, as described above. More...

std::unique_ptr< LuenbergerObserver< double > > SteadyStateKalmanFilter (std::unique_ptr< System< double >> system, std::unique_ptr< Context< double >> context, const Eigen::Ref< const Eigen::MatrixXd > &W, const Eigen::Ref< const Eigen::MatrixXd > &V)
Creates a Luenberger observer system using the optimal steady-state Kalman filter gain matrix, L, as described above. More...

Eigen::MatrixXd ObservabilityMatrix (const LinearSystem< double > &sys)
Returns the observability matrix: O = [ C; CA; ...; CA^{n-1} ]. More...

bool IsObservable (const LinearSystem< double > &sys, double threshold)
Returns true iff the observability matrix is full column rank. More...

## Function Documentation

 bool IsObservable ( const LinearSystem< double > & sys, double threshold )

Returns true iff the observability matrix is full column rank.

Here is the call graph for this function:

 Eigen::MatrixXd ObservabilityMatrix ( const LinearSystem< double > & sys )

Returns the observability matrix: O = [ C; CA; ...; CA^{n-1} ].

Here is the call graph for this function:

Here is the caller graph for this function:

 Eigen::MatrixXd SteadyStateKalmanFilter ( const Eigen::Ref< const Eigen::MatrixXd > & A, const Eigen::Ref< const Eigen::MatrixXd > & C, const Eigen::Ref< const Eigen::MatrixXd > & W, const Eigen::Ref< const Eigen::MatrixXd > & V )

Computes the optimal observer gain, L, for the linear system defined by

$\dot{x} = Ax + Bu + w,$

$y = Cx + Du + v.$

The resulting observer is of the form

$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x} - Du).$

The process noise, w, and the measurement noise, v, are assumed to be iid mean-zero Gaussian.

This is a simplified form of the full Kalman filter obtained by assuming that the state-covariance matrix has already converged to its steady-state solution.

Parameters
 A The state-space dynamics matrix of size num_states x num_states. C The state-space output matrix of size num_outputs x num_states. W The process noise covariance matrix, E[ww'], of size num_states x num_states. V The measurement noise covariance matrix, E[vv'], of size num_.
Returns
The steady-state observer gain matrix of size num_states x num_outputs.
Exceptions
 std::runtime_error if V is not positive definite.

Here is the call graph for this function:

Here is the caller graph for this function:

 std::unique_ptr< LuenbergerObserver< double > > SteadyStateKalmanFilter ( std::unique_ptr< LinearSystem< double >> system, const Eigen::Ref< const Eigen::MatrixXd > & W, const Eigen::Ref< const Eigen::MatrixXd > & V )

Creates a Luenberger observer system using the optimal steady-state Kalman filter gain matrix, L, as described above.

Parameters
 system A unique_ptr to a LinearSystem describing the system to be observed. The new observer will take and maintain ownership of this pointer. W The process noise covariance matrix, E[ww'], of size num_states x num_states. V The measurement noise covariance matrix, E[vv'], of size num_.
Returns
A unique_ptr to the constructed observer system.
Exceptions
 std::runtime_error if V is not positive definite.

Here is the call graph for this function:

 std::unique_ptr< LuenbergerObserver< double > > SteadyStateKalmanFilter ( std::unique_ptr< System< double >> system, std::unique_ptr< Context< double >> context, const Eigen::Ref< const Eigen::MatrixXd > & W, const Eigen::Ref< const Eigen::MatrixXd > & V )

Creates a Luenberger observer system using the optimal steady-state Kalman filter gain matrix, L, as described above.

The observer design is based on a linearization of the system about the nominal state defined by the context argument.

Parameters
 system A unique_ptr to a System describing the system to be observed. The new observer will take and maintain ownership of this pointer. context A unique_ptr to the context describing a fixed-point of the system (plus any additional parameters). The new observer will take and maintain ownership of this pointer for use in its internal forward simulation. W The process noise covariance matrix, E[ww'], of size num_states x num_states. V The measurement noise covariance matrix, E[vv'], of size num_.
Returns
A unique_ptr to the constructed observer system.
Exceptions
 std::runtime_error if V is not positive definite.

Here is the call graph for this function: