If \( z = Ax + b,\) implements a cost of the form:
\[ (z_1^2 + z_2^2 + ... + z_{n-1}^2) / z_0. \]
Note that this cost is convex when we additionally constrain z_0 > 0.
It is treated as a generic nonlinear objective by most solvers.
Costs of this form are sometimes referred to as "quadratic over linear".
|
| PerspectiveQuadraticCost (const Eigen::Ref< const Eigen::MatrixXd > &A, const Eigen::Ref< const Eigen::VectorXd > &b) |
| Construct a cost of the form (z_1^2 + z_2^2 + ... More...
|
|
| ~PerspectiveQuadraticCost () override |
|
const Eigen::MatrixXd & | A () const |
|
const Eigen::VectorXd & | b () const |
|
void | UpdateCoefficients (const Eigen::Ref< const Eigen::MatrixXd > &new_A, const Eigen::Ref< const Eigen::VectorXd > &new_b) |
| Updates the coefficients of the cost. More...
|
|
|
| PerspectiveQuadraticCost (const PerspectiveQuadraticCost &)=delete |
|
PerspectiveQuadraticCost & | operator= (const PerspectiveQuadraticCost &)=delete |
|
| PerspectiveQuadraticCost (PerspectiveQuadraticCost &&)=delete |
|
PerspectiveQuadraticCost & | operator= (PerspectiveQuadraticCost &&)=delete |
|
| Cost (const Cost &)=delete |
|
Cost & | operator= (const Cost &)=delete |
|
| Cost (Cost &&)=delete |
|
Cost & | operator= (Cost &&)=delete |
|
virtual | ~EvaluatorBase () |
|
void | Eval (const Eigen::Ref< const Eigen::VectorXd > &x, Eigen::VectorXd *y) const |
| Evaluates the expression. More...
|
|
void | Eval (const Eigen::Ref< const AutoDiffVecXd > &x, AutoDiffVecXd *y) const |
| Evaluates the expression. More...
|
|
void | Eval (const Eigen::Ref< const VectorX< symbolic::Variable >> &x, VectorX< symbolic::Expression > *y) const |
| Evaluates the expression. More...
|
|
void | set_description (const std::string &description) |
| Set a human-friendly description for the evaluator. More...
|
|
const std::string & | get_description () const |
| Getter for a human-friendly description for the evaluator. More...
|
|
std::ostream & | Display (std::ostream &os, const VectorX< symbolic::Variable > &vars) const |
| Formats this evaluator into the given stream using vars for the bound decision variable names. More...
|
|
std::ostream & | Display (std::ostream &os) const |
| Formats this evaluator into the given stream, without displaying the decision variables it is bound to. More...
|
|
std::string | ToLatex (const VectorX< symbolic::Variable > &vars, int precision=3) const |
| Returns a LaTeX string describing this evaluator. More...
|
|
int | num_vars () const |
| Getter for the number of variables, namely the number of rows in x, as used in Eval(x, y). More...
|
|
int | num_outputs () const |
| Getter for the number of outputs, namely the number of rows in y, as used in Eval(x, y). More...
|
|
void | SetGradientSparsityPattern (const std::vector< std::pair< int, int >> &gradient_sparsity_pattern) |
| Set the sparsity pattern of the gradient matrix ∂y/∂x (the gradient of y value in Eval, w.r.t x in Eval) . More...
|
|
const std::optional< std::vector< std::pair< int, int > > > & | gradient_sparsity_pattern () const |
| Returns the vector of (row_index, col_index) that contains all the entries in the gradient of Eval function (∂y/∂x) whose value could be non-zero, namely if ∂yᵢ/∂xⱼ could be non-zero, then the pair (i, j) is in gradient_sparsity_pattern. More...
|
|
bool | is_thread_safe () const |
| Returns whether it is safe to call Eval in parallel. More...
|
|
| EvaluatorBase (const EvaluatorBase &)=delete |
|
EvaluatorBase & | operator= (const EvaluatorBase &)=delete |
|
| EvaluatorBase (EvaluatorBase &&)=delete |
|
EvaluatorBase & | operator= (EvaluatorBase &&)=delete |
|