Drake

## Detailed Description

lb ≤ .5 xᵀQx + bᵀx ≤ ub Without loss of generality, the class stores a symmetric matrix Q.

For a non-symmetric matrix Q₀, we can define Q = (Q₀ + Q₀ᵀ) / 2, since xᵀQ₀x = xᵀQ₀ᵀx = xᵀ*(Q₀+Q₀ᵀ)/2 *x. The first equality holds because the transpose of a scalar is the scalar itself. Hence we can always convert a non-symmetric matrix Q₀ to a symmetric matrix Q.

#include <drake/solvers/constraint.h>

## Public Member Functions

template<typename DerivedQ , typename Derivedb >
QuadraticConstraint (const Eigen::MatrixBase< DerivedQ > &Q0, const Eigen::MatrixBase< Derivedb > &b, double lb, double ub)

virtual const Eigen::MatrixXd & Q () const
The symmetric matrix Q, being the Hessian of this constraint. More...

virtual const Eigen::VectorXd & b () const

template<typename DerivedQ , typename DerivedB >
void UpdateCoefficients (const Eigen::MatrixBase< DerivedQ > &new_Q, const Eigen::MatrixBase< DerivedB > &new_b)

Does not allow copy, move, or assignment Public Member Functions inherited from Constraint
template<typename DerivedLB , typename DerivedUB >
Constraint (int num_constraints, int num_vars, const Eigen::MatrixBase< DerivedLB > &lb, const Eigen::MatrixBase< DerivedUB > &ub, const std::string &description="")
Constructs a constraint which has num_constraints rows, with an input num_vars x 1 vector. More...

Constraint (int num_constraints, int num_vars)
Constructs a constraint which has num_constraints rows, with an input num_vars x 1 vector, with no bounds. More...

bool CheckSatisfied (const Eigen::Ref< const Eigen::VectorXd > &x, double tol=1E-6) const
Return whether this constraint is satisfied by the given value, x. More...

bool CheckSatisfied (const Eigen::Ref< const AutoDiffVecXd > &x, double tol=1E-6) const

symbolic::Formula CheckSatisfied (const Eigen::Ref< const VectorX< symbolic::Variable >> &x) const

const Eigen::VectorXd & lower_bound () const

const Eigen::VectorXd & upper_bound () const

int num_constraints () const
Number of rows in the output constraint. More...

Constraint (const Constraint &)=delete

Constraintoperator= (const Constraint &)=delete

Constraint (Constraint &&)=delete

Constraintoperator= (Constraint &&)=delete Public Member Functions inherited from EvaluatorBase
virtual ~EvaluatorBase ()

void Eval (const Eigen::Ref< const Eigen::VectorXd > &x, Eigen::VectorXd *y) const
Evaluates the expression. More...

void Eval (const Eigen::Ref< const AutoDiffVecXd > &x, AutoDiffVecXd *y) const
Evaluates the expression. More...

void Eval (const Eigen::Ref< const VectorX< symbolic::Variable >> &x, VectorX< symbolic::Expression > *y) const
Evaluates the expression. More...

void set_description (const std::string &description)
Set a human-friendly description for the evaluator. More...

const std::string & get_description () const
Getter for a human-friendly description for the evaluator. More...

std::ostream & Display (std::ostream &os, const VectorX< symbolic::Variable > &vars) const
Formats this evaluator into the given stream using vars for the bound decision variable names. More...

std::ostream & Display (std::ostream &os) const
Formats this evaluator into the given stream, without displaying the decision variables it is bound to. More...

int num_vars () const
Getter for the number of variables, namely the number of rows in x, as used in Eval(x, y). More...

int num_outputs () const
Getter for the number of outputs, namely the number of rows in y, as used in Eval(x, y). More...

Set the sparsity pattern of the gradient matrix ∂y/∂x (the gradient of y value in Eval, w.r.t x in Eval) . More...

const std::optional< std::vector< std::pair< int, int > > > & gradient_sparsity_pattern () const
Returns the vector of (row_index, col_index) that contains all the entries in the gradient of Eval function (∂y/∂x) whose value could be non-zero, namely if ∂yᵢ/∂xⱼ could be non-zero, then the pair (i, j) is in gradient_sparsity_pattern. More...

EvaluatorBase (const EvaluatorBase &)=delete

EvaluatorBaseoperator= (const EvaluatorBase &)=delete

EvaluatorBase (EvaluatorBase &&)=delete

EvaluatorBaseoperator= (EvaluatorBase &&)=delete

## Static Public Attributes

static const int kNumConstraints = 1 Protected Member Functions inherited from Constraint
void UpdateLowerBound (const Eigen::Ref< const Eigen::VectorXd > &new_lb)

void UpdateUpperBound (const Eigen::Ref< const Eigen::VectorXd > &new_ub)

void set_bounds (const Eigen::Ref< const Eigen::VectorXd > &lower_bound, const Eigen::Ref< const Eigen::VectorXd > &upper_bound)
Set the upper and lower bounds of the constraint. More...

virtual bool DoCheckSatisfied (const Eigen::Ref< const Eigen::VectorXd > &x, const double tol) const

virtual bool DoCheckSatisfied (const Eigen::Ref< const AutoDiffVecXd > &x, const double tol) const

virtual symbolic::Formula DoCheckSatisfied (const Eigen::Ref< const VectorX< symbolic::Variable >> &x) const Protected Member Functions inherited from EvaluatorBase
EvaluatorBase (int num_outputs, int num_vars, const std::string &description="")
Constructs a evaluator. More...

void set_num_outputs (int num_outputs)

## Constructor & Destructor Documentation

delete

delete

 QuadraticConstraint ( const Eigen::MatrixBase< DerivedQ > & Q0, const Eigen::MatrixBase< Derivedb > & b, double lb, double ub )

Template Parameters
 DerivedQ The type for Q. Derivedb The type for b.
Parameters
 Q0 The square matrix. Notice that Q₀ does not have to be symmetric. b The linear coefficient. lb The lower bound. ub The upper bound.

override

## ◆ b()

 virtual const Eigen::VectorXd& b ( ) const
virtual

delete

delete

## ◆ Q()

 virtual const Eigen::MatrixXd& Q ( ) const
virtual

The symmetric matrix Q, being the Hessian of this constraint.

## ◆ UpdateCoefficients()

 void UpdateCoefficients ( const Eigen::MatrixBase< DerivedQ > & new_Q, const Eigen::MatrixBase< DerivedB > & new_b )

The new matrices need to have the same dimension as before.

Parameters
 new_Q new quadratic term new_b new linear term

## ◆ kNumConstraints

 const int kNumConstraints = 1
static

The documentation for this class was generated from the following file: