lb ≤ .5 xᵀQx + bᵀx ≤ ub Without loss of generality, the class stores a symmetric matrix Q.
For a non-symmetric matrix Q₀, we can define Q = (Q₀ + Q₀ᵀ) / 2, since xᵀQ₀x = xᵀQ₀ᵀx = xᵀ*(Q₀+Q₀ᵀ)/2 *x. The first equality holds because the transpose of a scalar is the scalar itself. Hence we can always convert a non-symmetric matrix Q₀ to a symmetric matrix Q.
|
| template<typename DerivedQ, typename Derivedb> |
| | QuadraticConstraint (const Eigen::MatrixBase< DerivedQ > &Q0, const Eigen::MatrixBase< Derivedb > &b, double lb, double ub, std::optional< HessianType > hessian_type=std::nullopt) |
| | Construct a quadratic constraint.
|
| | ~QuadraticConstraint () override |
| virtual const Eigen::MatrixXd & | Q () const |
| | The symmetric matrix Q, being the Hessian of this constraint.
|
| virtual const Eigen::VectorXd & | b () const |
| HessianType | hessian_type () const |
| bool | is_convex () const |
| | Returns if this quadratic constraint is convex.
|
| template<typename DerivedQ, typename DerivedB> |
| void | UpdateCoefficients (const Eigen::MatrixBase< DerivedQ > &new_Q, const Eigen::MatrixBase< DerivedB > &new_b, std::optional< HessianType > hessian_type=std::nullopt) |
| | Updates the quadratic and linear term of the constraint.
|
| | QuadraticConstraint (const QuadraticConstraint &)=delete |
| QuadraticConstraint & | operator= (const QuadraticConstraint &)=delete |
| | QuadraticConstraint (QuadraticConstraint &&)=delete |
| QuadraticConstraint & | operator= (QuadraticConstraint &&)=delete |
| template<typename DerivedLB, typename DerivedUB> |
| | Constraint (int num_constraints, int num_vars, const Eigen::MatrixBase< DerivedLB > &lb, const Eigen::MatrixBase< DerivedUB > &ub, const std::string &description="") |
| | Constructs a constraint which has num_constraints rows, with an input num_vars x 1 vector.
|
| | Constraint (int num_constraints, int num_vars) |
| | Constructs a constraint which has num_constraints rows, with an input num_vars x 1 vector, with no bounds.
|
| bool | CheckSatisfied (const Eigen::Ref< const Eigen::VectorXd > &x, double tol=1E-6) const |
| | Return whether this constraint is satisfied by the given value, x.
|
| bool | CheckSatisfied (const Eigen::Ref< const AutoDiffVecXd > &x, double tol=1E-6) const |
| symbolic::Formula | CheckSatisfied (const Eigen::Ref< const VectorX< symbolic::Variable > > &x) const |
| const Eigen::VectorXd & | lower_bound () const |
| const Eigen::VectorXd & | upper_bound () const |
| int | num_constraints () const |
| | Number of rows in the output constraint.
|
| | Constraint (const Constraint &)=delete |
| Constraint & | operator= (const Constraint &)=delete |
| | Constraint (Constraint &&)=delete |
| Constraint & | operator= (Constraint &&)=delete |
| virtual | ~EvaluatorBase () |
| void | Eval (const Eigen::Ref< const Eigen::VectorXd > &x, Eigen::VectorXd *y) const |
| | Evaluates the expression.
|
| void | Eval (const Eigen::Ref< const AutoDiffVecXd > &x, AutoDiffVecXd *y) const |
| | Evaluates the expression.
|
| void | Eval (const Eigen::Ref< const VectorX< symbolic::Variable > > &x, VectorX< symbolic::Expression > *y) const |
| | Evaluates the expression.
|
| void | set_description (const std::string &description) |
| | Set a human-friendly description for the evaluator.
|
| const std::string & | get_description () const |
| | Getter for a human-friendly description for the evaluator.
|
| std::ostream & | Display (std::ostream &os, const VectorX< symbolic::Variable > &vars) const |
| | Formats this evaluator into the given stream using vars for the bound decision variable names.
|
| std::ostream & | Display (std::ostream &os) const |
| | Formats this evaluator into the given stream, without displaying the decision variables it is bound to.
|
| std::string | ToLatex (const VectorX< symbolic::Variable > &vars, int precision=3) const |
| | Returns a LaTeX string describing this evaluator.
|
| int | num_vars () const |
| | Getter for the number of variables, namely the number of rows in x, as used in Eval(x, y).
|
| int | num_outputs () const |
| | Getter for the number of outputs, namely the number of rows in y, as used in Eval(x, y).
|
| void | SetGradientSparsityPattern (const std::vector< std::pair< int, int > > &gradient_sparsity_pattern) |
| | Set the sparsity pattern of the gradient matrix ∂y/∂x (the gradient of y value in Eval, w.r.t x in Eval) .
|
| const std::optional< std::vector< std::pair< int, int > > > & | gradient_sparsity_pattern () const |
| | Returns the vector of (row_index, col_index) that contains all the entries in the gradient of Eval function (∂y/∂x) whose value could be non-zero, namely if ∂yᵢ/∂xⱼ could be non-zero, then the pair (i, j) is in gradient_sparsity_pattern.
|
| bool | is_thread_safe () const |
| | Returns whether it is safe to call Eval in parallel.
|
| | EvaluatorBase (const EvaluatorBase &)=delete |
| EvaluatorBase & | operator= (const EvaluatorBase &)=delete |
| | EvaluatorBase (EvaluatorBase &&)=delete |
| EvaluatorBase & | operator= (EvaluatorBase &&)=delete |