Implements a cost of the form
\[ .5 x'Qx + b'x + c \]
.
|
template<typename DerivedQ , typename Derivedb > |
| QuadraticCost (const Eigen::MatrixBase< DerivedQ > &Q, const Eigen::MatrixBase< Derivedb > &b, double c=0., std::optional< bool > is_hessian_psd=std::nullopt) |
| Constructs a cost of the form
\[ .5 x'Qx + b'x + c \]
. More...
|
|
| ~QuadraticCost () override |
|
const Eigen::MatrixXd & | Q () const |
| Returns the symmetric matrix Q, as the Hessian of the cost. More...
|
|
const Eigen::VectorXd & | b () const |
|
double | c () const |
|
bool | is_convex () const |
| Returns true if this cost is convex. More...
|
|
template<typename DerivedQ , typename DerivedB > |
void | UpdateCoefficients (const Eigen::MatrixBase< DerivedQ > &new_Q, const Eigen::MatrixBase< DerivedB > &new_b, double new_c=0., std::optional< bool > is_hessian_psd=std::nullopt) |
| Updates the quadratic and linear term of the constraint. More...
|
|
void | UpdateHessianEntry (int i, int j, double val, std::optional< bool > is_hessian_psd=std::nullopt) |
| Updates both Q(i, j) and Q(j, i) to val. More...
|
|
void | update_linear_coefficient_entry (int i, double val) |
| Updates b(i)=val. More...
|
|
void | update_constant_term (double new_c) |
| Updates the constant term to new_c . More...
|
|
|
| QuadraticCost (const QuadraticCost &)=delete |
|
QuadraticCost & | operator= (const QuadraticCost &)=delete |
|
| QuadraticCost (QuadraticCost &&)=delete |
|
QuadraticCost & | operator= (QuadraticCost &&)=delete |
|
| Cost (const Cost &)=delete |
|
Cost & | operator= (const Cost &)=delete |
|
| Cost (Cost &&)=delete |
|
Cost & | operator= (Cost &&)=delete |
|
virtual | ~EvaluatorBase () |
|
void | Eval (const Eigen::Ref< const Eigen::VectorXd > &x, Eigen::VectorXd *y) const |
| Evaluates the expression. More...
|
|
void | Eval (const Eigen::Ref< const AutoDiffVecXd > &x, AutoDiffVecXd *y) const |
| Evaluates the expression. More...
|
|
void | Eval (const Eigen::Ref< const VectorX< symbolic::Variable >> &x, VectorX< symbolic::Expression > *y) const |
| Evaluates the expression. More...
|
|
void | set_description (const std::string &description) |
| Set a human-friendly description for the evaluator. More...
|
|
const std::string & | get_description () const |
| Getter for a human-friendly description for the evaluator. More...
|
|
std::ostream & | Display (std::ostream &os, const VectorX< symbolic::Variable > &vars) const |
| Formats this evaluator into the given stream using vars for the bound decision variable names. More...
|
|
std::ostream & | Display (std::ostream &os) const |
| Formats this evaluator into the given stream, without displaying the decision variables it is bound to. More...
|
|
std::string | ToLatex (const VectorX< symbolic::Variable > &vars, int precision=3) const |
| Returns a LaTeX string describing this evaluator. More...
|
|
int | num_vars () const |
| Getter for the number of variables, namely the number of rows in x, as used in Eval(x, y). More...
|
|
int | num_outputs () const |
| Getter for the number of outputs, namely the number of rows in y, as used in Eval(x, y). More...
|
|
void | SetGradientSparsityPattern (const std::vector< std::pair< int, int >> &gradient_sparsity_pattern) |
| Set the sparsity pattern of the gradient matrix ∂y/∂x (the gradient of y value in Eval, w.r.t x in Eval) . More...
|
|
const std::optional< std::vector< std::pair< int, int > > > & | gradient_sparsity_pattern () const |
| Returns the vector of (row_index, col_index) that contains all the entries in the gradient of Eval function (∂y/∂x) whose value could be non-zero, namely if ∂yᵢ/∂xⱼ could be non-zero, then the pair (i, j) is in gradient_sparsity_pattern. More...
|
|
bool | is_thread_safe () const |
| Returns whether it is safe to call Eval in parallel. More...
|
|
| EvaluatorBase (const EvaluatorBase &)=delete |
|
EvaluatorBase & | operator= (const EvaluatorBase &)=delete |
|
| EvaluatorBase (EvaluatorBase &&)=delete |
|
EvaluatorBase & | operator= (EvaluatorBase &&)=delete |
|