A structure that contains the basic FiniteHorizonLinearQuadraticRegulator results.
The finite-horizon cost-to-go is given by (x-x0(t))'S(t)(x-x0(t)) + 2*(x-x₀(t))'sₓ(t) + s₀(t) and the optimal controller is given by u-u0(t) = -K(t)*(x-x₀(t)) - k₀(t). Please don't overlook the factor of 2 in front of the sₓ(t) term.
#include <drake/systems/controllers/finite_horizon_linear_quadratic_regulator.h>
Public Attributes | |
copyable_unique_ptr< trajectories::Trajectory< double > > | x0 |
copyable_unique_ptr< trajectories::Trajectory< double > > | u0 |
copyable_unique_ptr< trajectories::Trajectory< double > > | K |
Note: This K is the K_x term in the derivation notes. More... | |
copyable_unique_ptr< trajectories::Trajectory< double > > | S |
copyable_unique_ptr< trajectories::Trajectory< double > > | k0 |
copyable_unique_ptr< trajectories::Trajectory< double > > | sx |
copyable_unique_ptr< trajectories::Trajectory< double > > | s0 |
Note: This K is the K_x term in the derivation notes.