A class for integrating a function using numerical quadrature over triangular domains.
| NumericReturnType | the output type of the function being integrated. Commonly will be a IEEE floating point scalar (e.g., double), but could be an Eigen::VectorXd, a multibody::SpatialForce, or any other numeric type that supports both scalar multiplication (i.e., operator*(const NumericReturnType&, double) and addition with another of the same type (i.e., operator+(const NumericReturnType&, const NumericReturnType&)). |
| T | the scalar type of the function being integrated over. Supported types are currently only IEEE floating point scalars. |
#include <drake/multibody/triangle_quadrature/triangle_quadrature.h>
Static Public Member Functions | |
| static NumericReturnType | Integrate (const std::function< NumericReturnType(const Vector2< T > &)> &f, const TriangleQuadratureRule &rule, const T &area) |
| Numerically integrates the function f over a triangle using the given quadrature rule and the initial value. | |
| static NumericReturnType | Integrate (const std::function< NumericReturnType(const Vector3< T > &)> &f, const TriangleQuadratureRule &rule, const T &area) |
| Alternative signature for Integrate() that uses three-dimensional barycentric coordinates. | |
|
static |
Numerically integrates the function f over a triangle using the given quadrature rule and the initial value.
| f | a function f(p) that returns a numerical value for point p in the domain of the triangle, specified in barycentric coordinates. The barycentric coordinates are given by (p[0], p[1], 1 - p[0] - p[1]). |
| area | the area of the triangle. |
|
static |
Alternative signature for Integrate() that uses three-dimensional barycentric coordinates.
| f | a function f(p) that returns a numerical value for point p in the domain of the triangle, specified in barycentric coordinates. The barycentric coordinates are given by (p[0], p[1], p[2]). |
| area | the area of the triangle. |