Implements a cost of the form ‖Ax + b‖∞.
Note that this cost is non-differentiable when any two or more elements of Ax + b are equal.
|
| | LInfNormCost (const Eigen::Ref< const Eigen::MatrixXd > &A, const Eigen::Ref< const Eigen::VectorXd > &b) |
| | Construct a cost of the form ‖Ax + b‖∞. More...
|
| |
| | ~LInfNormCost () override |
| |
| const Eigen::MatrixXd & | A () const |
| |
| const Eigen::VectorXd & | b () const |
| |
| void | UpdateCoefficients (const Eigen::Ref< const Eigen::MatrixXd > &new_A, const Eigen::Ref< const Eigen::VectorXd > &new_b) |
| | Updates the coefficients of the cost. More...
|
| |
| void | update_A_entry (int i, int j, double val) |
| | Updates A(i, j) = val. More...
|
| |
| void | update_b_entry (int i, double val) |
| | Updates b(i) = val. More...
|
| |
|
| | LInfNormCost (const LInfNormCost &)=delete |
| |
| LInfNormCost & | operator= (const LInfNormCost &)=delete |
| |
| | LInfNormCost (LInfNormCost &&)=delete |
| |
| LInfNormCost & | operator= (LInfNormCost &&)=delete |
| |
| | Cost (const Cost &)=delete |
| |
| Cost & | operator= (const Cost &)=delete |
| |
| | Cost (Cost &&)=delete |
| |
| Cost & | operator= (Cost &&)=delete |
| |
| virtual | ~EvaluatorBase () |
| |
| void | Eval (const Eigen::Ref< const Eigen::VectorXd > &x, Eigen::VectorXd *y) const |
| | Evaluates the expression. More...
|
| |
| void | Eval (const Eigen::Ref< const AutoDiffVecXd > &x, AutoDiffVecXd *y) const |
| | Evaluates the expression. More...
|
| |
| void | Eval (const Eigen::Ref< const VectorX< symbolic::Variable >> &x, VectorX< symbolic::Expression > *y) const |
| | Evaluates the expression. More...
|
| |
| void | set_description (const std::string &description) |
| | Set a human-friendly description for the evaluator. More...
|
| |
| const std::string & | get_description () const |
| | Getter for a human-friendly description for the evaluator. More...
|
| |
| std::ostream & | Display (std::ostream &os, const VectorX< symbolic::Variable > &vars) const |
| | Formats this evaluator into the given stream using vars for the bound decision variable names. More...
|
| |
| std::ostream & | Display (std::ostream &os) const |
| | Formats this evaluator into the given stream, without displaying the decision variables it is bound to. More...
|
| |
| std::string | ToLatex (const VectorX< symbolic::Variable > &vars, int precision=3) const |
| | Returns a LaTeX string describing this evaluator. More...
|
| |
| int | num_vars () const |
| | Getter for the number of variables, namely the number of rows in x, as used in Eval(x, y). More...
|
| |
| int | num_outputs () const |
| | Getter for the number of outputs, namely the number of rows in y, as used in Eval(x, y). More...
|
| |
| void | SetGradientSparsityPattern (const std::vector< std::pair< int, int >> &gradient_sparsity_pattern) |
| | Set the sparsity pattern of the gradient matrix ∂y/∂x (the gradient of y value in Eval, w.r.t x in Eval) . More...
|
| |
| const std::optional< std::vector< std::pair< int, int > > > & | gradient_sparsity_pattern () const |
| | Returns the vector of (row_index, col_index) that contains all the entries in the gradient of Eval function (∂y/∂x) whose value could be non-zero, namely if ∂yᵢ/∂xⱼ could be non-zero, then the pair (i, j) is in gradient_sparsity_pattern. More...
|
| |
| bool | is_thread_safe () const |
| | Returns whether it is safe to call Eval in parallel. More...
|
| |
| | EvaluatorBase (const EvaluatorBase &)=delete |
| |
| EvaluatorBase & | operator= (const EvaluatorBase &)=delete |
| |
| | EvaluatorBase (EvaluatorBase &&)=delete |
| |
| EvaluatorBase & | operator= (EvaluatorBase &&)=delete |
| |