pydrake.symbolic

Symbolic variable, variables, monomial, expression, polynomial, and formula

pydrake.symbolic.Evaluate(m: numpy.ndarray[object[m, n]], env: Dict[pydrake.symbolic.Variable, float] = {}, generator: pydrake.common._module_py.RandomGenerator = None) → numpy.ndarray[float64[m, n]]

Evaluates a symbolic matrix m using env and random_generator.

If there is a random variable in m which is unassigned in env, this function uses random_generator to sample a value and use the value to substitute all occurrences of the random variable in m.

Returns:

a matrix of double whose size is the size of m.

Raises:

RuntimeError if NaN is detected during evaluation.

Raises:
  • RuntimeError if m includes unassigned random variables but
  • random_generator is nullptr.
class pydrake.symbolic.Expression
Differentiate(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Variable) → pydrake.symbolic.Expression

Differentiates this symbolic expression with respect to the variable var.

Raises:RuntimeError if it is not differentiable.
EqualTo(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Expression) → bool

Checks structural equality.

Two expressions e1 and e2 are structurally equal when they have the same internal AST(abstract-syntax tree) representation. Please note that we can have two computationally (or extensionally) equivalent expressions which are not structurally equal. For example, consider:

e1 = 2 * (x + y) e2 = 2x + 2y

Obviously, we know that e1 and e2 are evaluated to the same value for all assignments to x and y. However, e1 and e2 are not structurally equal by the definition. Note that e1 is a multiplication expression (is_multiplication(e1) is true) while e2 is an addition expression (is_addition(e2) is true).

One main reason we use structural equality in EqualTo is due to Richardson’s Theorem. It states that checking ∀x. E(x) = F(x) is undecidable when we allow sin, asin, log, exp in E and F. Read https://en.wikipedia.org/wiki/Richardson%27s_theorem for details.

Note that for polynomial cases, you can use Expand method and check if two polynomial expressions p1 and p2 are computationally equal. To do so, you check the following:

(p1.Expand() - p2.Expand()).EqualTo(0).

Evaluate(*args, **kwargs)

Overloaded function.

  1. Evaluate(self: pydrake.symbolic.Expression, env: Dict[pydrake.symbolic.Variable, float] = {}, generator: pydrake.common._module_py.RandomGenerator = None) -> float

Evaluates using a given environment (by default, an empty environment) and a random number generator. If there is a random variable in this expression which is unassigned in env, this method uses random_generator to sample a value and use the value to substitute all occurrences of the variable in this expression.

Raises:
  • RuntimeError if there exists a non-random variable in this
  • expression whose assignment is not provided by env.
Raises:
  • RuntimeError if an unassigned random variable is detected while
  • random_generator is nullptr.
Raises:

RuntimeError if NaN is detected during evaluation.

  1. Evaluate(self: pydrake.symbolic.Expression, generator: pydrake.common._module_py.RandomGenerator) -> float

Evaluates using an empty environment and a random number generator. It uses random_generator to sample values for the random variables in this expression.

See the above overload for the exceptions that it might throw.

EvaluatePartial(self: pydrake.symbolic.Expression, arg0: Dict[pydrake.symbolic.Variable, float]) → pydrake.symbolic.Expression

Partially evaluates this expression using an environment env. Internally, this method promotes env into a substitution (Variable → Expression) and call Evaluate::Substitute with it.

Raises:RuntimeError if NaN is detected during evaluation.
Expand(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression

Expands out products and positive integer powers in expression. For example, (x + 1) * (x - 1) is expanded to x^2 - 1 and (x + y)^2 is expanded to x^2 + 2xy + y^2. Note that Expand applies recursively to sub-expressions. For instance, sin(2 * (x + y)) is expanded to sin(2x + 2y). It also simplifies “division by constant” cases. See “drake/common/test/symbolic_expansion_test.cc” to find the examples.

Raises:RuntimeError if NaN is detected during expansion.
GetVariables(self: pydrake.symbolic.Expression) → pydrake.symbolic.Variables

Collects variables in expression.

Jacobian(self: pydrake.symbolic.Expression, arg0: numpy.ndarray[object[m, 1]]) → numpy.ndarray[object[1, n]]

Let f be this Expression, computes a row vector of derivatives, [∂f/∂vars(0), ... , ∂f/∂vars(n-1)] with respect to the variables vars.

Substitute(*args, **kwargs)

Overloaded function.

  1. Substitute(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Variable, arg1: pydrake.symbolic.Expression) -> pydrake.symbolic.Expression

Returns a copy of this expression replacing all occurrences of var with e.

Raises:RuntimeError if NaN is detected during substitution.
  1. Substitute(self: pydrake.symbolic.Expression, arg0: Dict[pydrake.symbolic.Variable, pydrake.symbolic.Expression]) -> pydrake.symbolic.Expression

Returns a copy of this expression replacing all occurrences of the variables in s with corresponding expressions in s. Note that the substitutions occur simultaneously. For example, (x / y).Substitute({{x, y}, {y, x}}) gets (y / x).

Raises:RuntimeError if NaN is detected during substitution.
arccos(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
arcsin(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
arctan2(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
ceil(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
cos(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
cosh(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
exp(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
floor(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
log(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
max(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
min(self: pydrake.symbolic.Expression, arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
sin(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
sinh(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
sqrt(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
tan(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
tanh(self: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
to_string(self: pydrake.symbolic.Expression) → str

Returns string representation of Expression.

class pydrake.symbolic.Formula

Represents a symbolic form of a first-order logic formula.

It has the following grammar:

F := ⊥ | ⊤ | Var | E = E | E ≠ E | E > E | E ≥ E | E < E | E ≤ E
| E ∧ ... ∧ E | E ∨ ... ∨ E | ¬F | ∀ x₁, ..., xn. F

In the implementation, Formula is a simple wrapper including a shared pointer to FormulaCell class which is a super-class of different kinds of symbolic formulas (i.e. FormulaAnd, FormulaOr, FormulaEq). Note that it includes a shared pointer, not a unique pointer, to allow sharing sub-expressions.

Note

The sharing of sub-expressions is not yet implemented.

The following simple simplifications are implemented:

E1 = E2        ->  True    (if E1 and E2 are structurally equal)
E1 ≠ E2        ->  False   (if E1 and E2 are structurally equal)
E1 > E2        ->  False   (if E1 and E2 are structurally equal)
E1 ≥ E2        ->  True    (if E1 and E2 are structurally equal)
E1 < E2        ->  False   (if E1 and E2 are structurally equal)
E1 ≤ E2        ->  True    (if E1 and E2 are structurally equal)
F1 ∧ F2        ->  False   (if either F1 or F2 is False)
F1 ∨ F2        ->  True    (if either F1 or F2 is True)
¬(¬(F))        ->  F

We flatten nested conjunctions (or disjunctions) at the construction. A conjunction (resp. disjunction) takes a set of conjuncts (resp. disjuncts). Note that any duplicated conjunct/disjunct is removed. For example, both of f1 && (f2 && f1) and (f1 && f2) && f1 are flattened to f1 && f2 && f1 and simplified into f1 && f2. As a result, the two are identified as the same formula.

Note

Formula class has an explicit conversion operator to bool. It evaluates a symbolic formula under an empty environment. If a symbolic formula includes variables, the conversion operator throws an exception. This operator is only intended for third-party code doing things like (imag(SymbolicExpression(0)) == SymbolicExpression(0)) { ... }; that we found in Eigen3 codebase. In general, a user of this class should explicitly call Evaluate from within Drake for readability.

EqualTo(self: pydrake.symbolic.Formula, arg0: pydrake.symbolic.Formula) → bool

Checks structural equality.

Evaluate(self: pydrake.symbolic.Formula, arg0: Dict[pydrake.symbolic.Variable, float]) → bool

Evaluates using a given environment (by default, an empty environment) and a random number generator. If there is a random variable in this formula which is unassigned in env, it uses random_generator to sample a value and use it to substitute all occurrences of the random variable in this formula.

Raises:
  • RuntimeError if a variable v is needed for an evaluation but
  • not provided by env.
Raises:
  • RuntimeError if an unassigned random variable is detected while
  • random_generator is nullptr.
False() → pydrake.symbolic.Formula

Symbolic formula representing false.

False_() → pydrake.symbolic.Formula

Symbolic formula representing false.

GetFreeVariables(self: pydrake.symbolic.Formula) → pydrake.symbolic.Variables

Gets free variables (unquantified variables).

Substitute(*args, **kwargs)

Overloaded function.

  1. Substitute(self: pydrake.symbolic.Formula, arg0: pydrake.symbolic.Variable, arg1: pydrake.symbolic.Expression) -> pydrake.symbolic.Formula

Returns a copy of this formula replacing all occurrences of var with e.

Raises:RuntimeError if NaN is detected during substitution.
  1. Substitute(self: pydrake.symbolic.Formula, arg0: pydrake.symbolic.Variable, arg1: pydrake.symbolic.Variable) -> pydrake.symbolic.Formula

Returns a copy of this formula replacing all occurrences of var with e.

Raises:RuntimeError if NaN is detected during substitution.
  1. Substitute(self: pydrake.symbolic.Formula, arg0: pydrake.symbolic.Variable, arg1: float) -> pydrake.symbolic.Formula

Returns a copy of this formula replacing all occurrences of var with e.

Raises:RuntimeError if NaN is detected during substitution.
  1. Substitute(self: pydrake.symbolic.Formula, arg0: Dict[pydrake.symbolic.Variable, pydrake.symbolic.Expression]) -> pydrake.symbolic.Formula

Returns a copy of this formula replacing all occurrences of the variables in s with corresponding expressions in s. Note that the substitutions occur simultaneously. For example, (x / y > 0).Substitute({{x, y}, {y, x}}) gets (y / x > 0).

Raises:RuntimeError if NaN is detected during substitution.
True() → pydrake.symbolic.Formula

Symbolic formula representing true.

True_() → pydrake.symbolic.Formula

Symbolic formula representing true.

to_string(self: pydrake.symbolic.Formula) → str

Returns string representation of Formula.

pydrake.symbolic.Jacobian(arg0: numpy.ndarray[object[m, 1]], arg1: numpy.ndarray[object[m, 1]]) → numpy.ndarray[object[m, n]]

Let f be this Expression, computes a row vector of derivatives, [∂f/∂vars(0), ... , ∂f/∂vars(n-1)] with respect to the variables vars.

class pydrake.symbolic.Monomial
EqualTo(self: pydrake.symbolic.Monomial, arg0: pydrake.symbolic.Monomial) → bool
Evaluate(self: pydrake.symbolic.Monomial, arg0: Dict[pydrake.symbolic.Variable, float]) → float

Evaluates under a given environment env.

Raises:
  • ValueError exception if there is a variable in this monomial whose
  • assignment is not provided by env.
GetVariables(self: pydrake.symbolic.Monomial) → pydrake.symbolic.Variables

Returns the set of variables in this monomial.

ToExpression(self: pydrake.symbolic.Monomial) → pydrake.symbolic.Expression

Returns a symbolic expression representing this monomial.

degree(self: pydrake.symbolic.Monomial, arg0: pydrake.symbolic.Variable) → int

Returns the degree of this Monomial in a variable v.

get_powers(self: pydrake.symbolic.Monomial) → Dict[pydrake.symbolic.Variable, int]

Returns the internal representation of Monomial, the map from a base (Variable) to its exponent (int).

pow_in_place(self: pydrake.symbolic.Monomial, arg0: int) → pydrake.symbolic.Monomial

Returns this monomial raised to p.

Raises:RuntimeError if p is negative.
total_degree(self: pydrake.symbolic.Monomial) → int

Returns the total degree of this Monomial.

pydrake.symbolic.MonomialBasis(*args, **kwargs)

Overloaded function.

  1. MonomialBasis(arg0: numpy.ndarray[object[m, 1]], arg1: int) -> numpy.ndarray[object[m, 1]]

Returns all monomials up to a given degree under the graded reverse lexicographic order. Note that graded reverse lexicographic order uses the total order among Variable which is based on a variable’s unique ID. For example, for a given variable ordering x > y > z, MonomialBasis({x, y, z}, 2) returns a column vector [x^2, xy, y^2, xz, yz, z^2, x, y, z, 1].

Precondition:
vars is a non-empty set.
Precondition:
degree is a non-negative integer.
  1. MonomialBasis(arg0: pydrake.symbolic.Variables, arg1: int) -> numpy.ndarray[object[m, 1]]

Returns all monomials up to a given degree under the graded reverse lexicographic order. Note that graded reverse lexicographic order uses the total order among Variable which is based on a variable’s unique ID. For example, for a given variable ordering x > y > z, MonomialBasis({x, y, z}, 2) returns a column vector [x^2, xy, y^2, xz, yz, z^2, x, y, z, 1].

Precondition:
vars is a non-empty set.
Precondition:
degree is a non-negative integer.
class pydrake.symbolic.Polynomial

Represents symbolic polynomials. A symbolic polynomial keeps a mapping from a monomial of indeterminates to its coefficient in a symbolic expression.

A polynomial p has to satisfy an invariant such that p.decision_variables() p.indeterminates() = . We have CheckInvariant() method to check the invariant.

Note that arithmetic operations (+,-,*) between a Polynomial and a Variable are not provided. The problem is that Variable class has no intrinsic information if a variable is a decision variable or an indeterminate while we need this information to perform arithmetic operations over Polynomials.

AddProduct(self: pydrake.symbolic.Polynomial, arg0: pydrake.symbolic.Expression, arg1: pydrake.symbolic.Monomial) → pydrake.symbolic.Polynomial

Adds coeff * m to this polynomial.

Degree(self: pydrake.symbolic.Polynomial, arg0: pydrake.symbolic.Variable) → int

Returns the highest degree of this polynomial in a variable v.

Differentiate(self: pydrake.symbolic.Polynomial, arg0: pydrake.symbolic.Variable) → pydrake.symbolic.Polynomial

Differentiates this polynomial with respect to the variable x. Note that a variable x can be either a decision variable or an indeterminate.

EqualTo(self: pydrake.symbolic.Polynomial, arg0: pydrake.symbolic.Polynomial) → bool

Returns true if this polynomial and p are structurally equal.

Evaluate(self: pydrake.symbolic.Polynomial, arg0: Dict[pydrake.symbolic.Variable, float]) → float

Evaluates this polynomial under a given environment env.

Raises:
  • ValueError if there is a variable in this polynomial whose
  • assignment is not provided by env.
EvaluatePartial(*args, **kwargs)

Overloaded function.

  1. EvaluatePartial(self: pydrake.symbolic.Polynomial, env: Dict[pydrake.symbolic.Variable, float]) -> pydrake.symbolic.Polynomial

Partially evaluates this polynomial using an environment env.

Raises:RuntimeError if NaN is detected during evaluation.
  1. EvaluatePartial(self: pydrake.symbolic.Polynomial, var: pydrake.symbolic.Variable, c: float) -> pydrake.symbolic.Polynomial

Partially evaluates this polynomial by substituting var with c.

Raises:RuntimeError if NaN is detected at any point during evaluation.
Jacobian(self: pydrake.symbolic.Polynomial, arg0: numpy.ndarray[object[m, 1]]) → numpy.ndarray[object[1, n]]

Computes the Jacobian matrix J of the polynomial with respect to vars. J(0,i) contains ∂f/∂vars(i).

RemoveTermsWithSmallCoefficients(self: pydrake.symbolic.Polynomial, coefficient_tol: float) → pydrake.symbolic.Polynomial

Removes the terms whose absolute value of the coefficients are smaller than or equal to coefficient_tol For example, if the polynomial is 2x² + 3xy + 10⁻⁴x - 10⁻⁵, then after calling RemoveTermsWithSmallCoefficients(1e-3), the returned polynomial becomes 2x² + 3xy.

Parameter coefficient_tol:
A positive scalar.
Returns polynomial_cleaned:
A polynomial whose terms with small coefficients are removed.
ToExpression(self: pydrake.symbolic.Polynomial) → pydrake.symbolic.Expression

Returns an equivalent symbolic expression of this polynomial.

TotalDegree(self: pydrake.symbolic.Polynomial) → int

Returns the total degree of this polynomial.

decision_variables(self: pydrake.symbolic.Polynomial) → pydrake.symbolic.Variables

Returns the decision variables of this polynomial.

indeterminates(self: pydrake.symbolic.Polynomial) → pydrake.symbolic.Variables

Returns the indeterminates of this polynomial.

monomial_to_coefficient_map(self: pydrake.symbolic.Polynomial) → Dict[pydrake.symbolic.Monomial, pydrake.symbolic.Expression]

Returns the mapping from a Monomial to its corresponding coefficient of this polynomial.

pydrake.symbolic.Substitute(*args, **kwargs)

Overloaded function.

  1. Substitute(m: numpy.ndarray[object[m, n]], subst: Dict[pydrake.symbolic.Variable, pydrake.symbolic.Expression]) -> numpy.ndarray[object[m, n]]

Substitutes a symbolic matrix m using a given substitution subst.

Returns:a matrix of symbolic expressions whose size is the size of m.
Raises:RuntimeError if NaN is detected during substitution.
  1. Substitute(m: numpy.ndarray[object[m, n]], var: pydrake.symbolic.Variable, e: pydrake.symbolic.Expression) -> numpy.ndarray[object[m, n]]

Substitutes var with e in a symbolic matrix m.

Returns:a matrix of symbolic expressions whose size is the size of m.
Raises:RuntimeError if NaN is detected during substitution.
class pydrake.symbolic.Variable

Represents a symbolic variable.

Note

Expression::Evaluate and Formula::Evaluate methods take a symbolic environment (Variable → double) and a random number generator. When an expression or a formula includes random variables, Evaluate methods use the random number generator to draw a number for a random variable from the given distribution. Then this numeric value is used to substitute all the occurrences of the corresponding random variable in an expression or a formula.

EqualTo(self: pydrake.symbolic.Variable, arg0: pydrake.symbolic.Variable) → bool

Checks the equality of two variables based on their ID values.

class Type

Members:

CONTINUOUS : < A CONTINUOUS variable takes a double value.

INTEGER : < An INTEGER variable takes an int value.

BINARY : < A BINARY variable takes an integer value from {0, 1}.

BOOLEAN : < A BOOLEAN variable takes a bool value.

RANDOM_UNIFORM : < A random variable whose value will be drawn from < uniform real

distributed ∈ [0,1).

RANDOM_GAUSSIAN : < A random variable whose value will be drawn from < mean-zero,

unit-variance normal.

RANDOM_EXPONENTIAL : < A random variable whose value will be drawn from < exponential

distribution with λ=1.

BINARY = Type.BINARY
BOOLEAN = Type.BOOLEAN
CONTINUOUS = Type.CONTINUOUS
INTEGER = Type.INTEGER
RANDOM_EXPONENTIAL = Type.RANDOM_EXPONENTIAL
RANDOM_GAUSSIAN = Type.RANDOM_GAUSSIAN
RANDOM_UNIFORM = Type.RANDOM_UNIFORM
name

(self – handle) -> str

get_id(self: pydrake.symbolic.Variable) → int
get_type(self: pydrake.symbolic.Variable) → pydrake.symbolic.Variable.Type
class pydrake.symbolic.Variables

Represents a set of variables.

This class is based on std::set<Variable>. The intent is to add things that we need including set-union (Variables::insert, operator+, operator+=), set-minus (Variables::erase, operator-, operator-=), and subset/superset checking functions (Variables::IsSubsetOf, Variables::IsSupersetOf, Variables::IsStrictSubsetOf, Variables::IsStrictSupersetOf).

EqualTo(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) → bool
IsStrictSubsetOf(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) → bool

Return true if vars is a strict subset of the Variables.

IsStrictSupersetOf(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) → bool

Return true if vars is a strict superset of the Variables.

IsSubsetOf(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) → bool

Return true if vars is a subset of the Variables.

IsSupersetOf(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) → bool

Return true if vars is a superset of the Variables.

empty(self: pydrake.symbolic.Variables) → bool
erase(*args, **kwargs)

Overloaded function.

  1. erase(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variable) -> int

Erases key from a set. Return number of erased elements (0 or 1).

  1. erase(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) -> int

Erases variables in vars from a set. Return number of erased elements ([0, vars.size()]).

include(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variable) → bool

Return true if key is included in the Variables.

insert(*args, **kwargs)

Overloaded function.

  1. insert(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variable) -> None

Inserts a variable var into a set.

  1. insert(self: pydrake.symbolic.Variables, arg0: pydrake.symbolic.Variables) -> None

Inserts variables in vars into a set.

size(self: pydrake.symbolic.Variables) → int

Returns the number of elements.

to_string(self: pydrake.symbolic.Variables) → str

Returns string representation of Variables.

pydrake.symbolic.abs(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.acos(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.asin(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.atan(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.atan2(arg0: pydrake.symbolic.Expression, arg1: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.ceil(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.cos(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.cosh(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.exp(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.floor(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.if_then_else(arg0: drake::symbolic::Formula, arg1: pydrake.symbolic.Expression, arg2: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.intersect(arg0: pydrake.symbolic.Variables, arg1: pydrake.symbolic.Variables) → pydrake.symbolic.Variables
pydrake.symbolic.inv(arg0: numpy.ndarray[object[m, n]]) → numpy.ndarray[object[m, n]]
pydrake.symbolic.log(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.logical_and(*formulas)
pydrake.symbolic.logical_not(arg0: pydrake.symbolic.Formula) → pydrake.symbolic.Formula
pydrake.symbolic.logical_or(*formulas)
pydrake.symbolic.max(arg0: pydrake.symbolic.Expression, arg1: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.min(arg0: pydrake.symbolic.Expression, arg1: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.pow(arg0: pydrake.symbolic.Expression, arg1: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.sin(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.sinh(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.sqrt(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.tan(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression
pydrake.symbolic.tanh(arg0: pydrake.symbolic.Expression) → pydrake.symbolic.Expression