Drake
Drake C++ Documentation
Loading...
Searching...
No Matches
drake::planning Namespace Reference

Namespaces

namespace  graph_algorithms
namespace  trajectory_optimization

Classes

class  BodyShapeDescription
 BodyShapeDescription captures all the information necessary to describe a SceneGraph collision shape associated with a MultibodyPlant Body: a shape S, the MultibodyPlant body B (identified by model instance and body names), and the rigid pose of the shape S relative to the body B, X_BS. More...
class  CollisionChecker
 Interface for collision checkers to use. More...
class  CollisionCheckerContext
 This class represents the data necessary for CollisionChecker to operate safely across multiple threads in its const API. More...
struct  CollisionCheckerParams
 A set of common constructor parameters for a CollisionChecker. More...
class  CommonSampledIrisOptions
 Various options which are common to the sampling-based algorithms IrisNp2 and IrisZo for generating collision free polytopes in configuration space. More...
class  DistanceAndInterpolationProvider
 This class represents the base interface for performing configuration distance and interpolation operations, used by CollisionChecker. More...
class  DofMask
 A mask on the degrees of freedom (dofs) of a MultibodyPlant instance, partitioning the plant's dofs into "selected" and "unselected" dofs. More...
class  EdgeMeasure
 The measure of the distance of the edge from q1 to q2 and the portion of that is collision free. More...
struct  IrisFromCliqueCoverOptions
class  IrisNp2Options
 IrisNp2Options collects all parameters for the IRIS-NP2 algorithm. More...
class  IrisParameterizationFunction
 Ordinarily, IRIS algorithms grow collision free regions in the robot's configuration space C. More...
class  IrisZoOptions
 IrisZoOptions collects all parameters for the IRIS-ZO algorithm. More...
class  JointLimits
 Wrapper type for position, velocity, and acceleration limits. More...
class  LinearDistanceAndInterpolationProvider
 This class represents a basic "linear" implementation of DistanceAndInterpolationProvider. More...
struct  RaySamplerOptions
 RaySamplerOptions contains settings specific to the kRaySampler strategy for drawing the initial samples. More...
class  RobotClearance
 A summary of the clearance – a collection of distance measurements – between the robot and everything in the world. More...
class  RobotDiagram
 Storage for a combined diagram, plant, and scene graph. More...
class  RobotDiagramBuilder
 Storage for a combined diagram builder, plant, and scene graph. More...
class  SceneGraphCollisionChecker
 An implementation of CollisionChecker that uses SceneGraph to provide collision checks. More...
class  UnimplementedCollisionChecker
 A concrete collision checker implementation that throws an exception for every virtual function hook. More...
class  ZmpPlanner
 Given a desired two dimensional (X and Y) zero-moment point (ZMP) trajectory parameterized as a piecewise polynomial, an optimal center of mass (CoM) trajectory is planned using a linear inverted pendulum model (LIPM). More...

Typedefs

using ConfigurationDistanceFunction
 Configuration distance takes two configurations of the robot, q1 and q2, both as Eigen::VectorXd, and returns (potentially weighted) C-space distance as a double.
using ConfigurationInterpolationFunction
 Configuration interpolation function takes two configurations of the robot, q1, and q2, both as Eigen::VectorXd, plus a ratio, r, in [0, 1] and returns the interpolated configuration.

Enumerations

enum class  RobotCollisionType : uint8_t { kNoCollision = 0x00 , kEnvironmentCollision = 0x01 , kSelfCollision = 0x02 , kEnvironmentAndSelfCollision = kEnvironmentCollision | kSelfCollision }
 Enumerates these predicates (and their combinations): More...

Functions

BodyShapeDescription MakeBodyShapeDescription (const multibody::MultibodyPlant< double > &plant, const systems::Context< double > &plant_context, const geometry::GeometryId &geometry_id)
 Constructs a BodyShapeDescription by extracting the shape, pose, and names associated with the provided geometry_id.
void IrisInConfigurationSpaceFromCliqueCover (const CollisionChecker &checker, const IrisFromCliqueCoverOptions &options, RandomGenerator *generator, std::vector< geometry::optimization::HPolyhedron > *sets, const planning::graph_algorithms::MaxCliqueSolverBase *max_clique_solver=nullptr)
 Cover the configuration space in Iris regions using the Visibility Clique Cover Algorithm as described in.
geometry::optimization::HPolyhedron IrisNp2 (const SceneGraphCollisionChecker &checker, const geometry::optimization::Hyperellipsoid &starting_ellipsoid, const geometry::optimization::HPolyhedron &domain, const IrisNp2Options &options=IrisNp2Options())
 The IRIS-NP2 (Iterative Regional Inflation by Semidefinite and Nonlinear Programming 2) algorithm, as described in.
geometry::optimization::HPolyhedron IrisZo (const CollisionChecker &checker, const geometry::optimization::Hyperellipsoid &starting_ellipsoid, const geometry::optimization::HPolyhedron &domain, const IrisZoOptions &options=IrisZoOptions())
 The IRIS-ZO (Iterative Regional Inflation by Semidefinite programming - Zero Order) algorithm, as described in.
RobotCollisionType SetInEnvironmentCollision (RobotCollisionType collision_type, bool in_environment_collision)
RobotCollisionType SetInSelfCollision (RobotCollisionType collision_type, bool in_self_collision)
Eigen::SparseMatrix< bool > VisibilityGraph (const CollisionChecker &checker, const Eigen::Ref< const Eigen::MatrixXd > &points, Parallelism parallelize=Parallelism::Max())
 Given some number of sampled points in the configuration space of checker's plant(), computes the "visibility graph" – two points have an edge between them if the line segment connecting them is collision free.

Typedef Documentation

◆ ConfigurationDistanceFunction

Initial value:
std::function<double(const Eigen::VectorXd&, const Eigen::VectorXd&)>

Configuration distance takes two configurations of the robot, q1 and q2, both as Eigen::VectorXd, and returns (potentially weighted) C-space distance as a double.

The returned distance will be strictly non-negative.

To be valid, the function must satisfy the following condition:

  • dist(q, q) ≡ 0

for values of q that are valid for the CollisionChecker's plant.

◆ ConfigurationInterpolationFunction

Initial value:
std::function<Eigen::VectorXd(
const Eigen::VectorXd&, const Eigen::VectorXd&, double)>

Configuration interpolation function takes two configurations of the robot, q1, and q2, both as Eigen::VectorXd, plus a ratio, r, in [0, 1] and returns the interpolated configuration.

Behavior of the function for values of r outside of the range [0,1] is undefined.

To be valid, the function must satisfy the following conditions:

  • interpolate(q1, q2, 0) ≡ q1
  • interpolate(q1, q2, 1) ≡ q2
  • interpolate(q, q, r) ≡ q, for all r in [0, 1]

for values of q, q1, and q2 that are valid for the CollisionChecker's plant.

Function Documentation

◆ MakeBodyShapeDescription()

BodyShapeDescription MakeBodyShapeDescription ( const multibody::MultibodyPlant< double > & plant,
const systems::Context< double > & plant_context,
const geometry::GeometryId & geometry_id )

Constructs a BodyShapeDescription by extracting the shape, pose, and names associated with the provided geometry_id.

Precondition
plant_context is compatible with plant.
plant is connected to a scene graph.
geometry_id refers to a geometry rigidly affixed to a body of plant.

◆ SetInEnvironmentCollision()

RobotCollisionType SetInEnvironmentCollision ( RobotCollisionType collision_type,
bool in_environment_collision )
Returns
a RobotCollisionType where the environment-collision value is that asserted by in_environment_collision, and the self-collision value is that asserted by collision_type.

◆ SetInSelfCollision()

RobotCollisionType SetInSelfCollision ( RobotCollisionType collision_type,
bool in_self_collision )
Returns
a RobotCollisionType where the self-collision value is that asserted by in_self_collision, and the environment-collision value is that asserted by collision_type.

◆ VisibilityGraph()

Eigen::SparseMatrix< bool > VisibilityGraph ( const CollisionChecker & checker,
const Eigen::Ref< const Eigen::MatrixXd > & points,
Parallelism parallelize = Parallelism::Max() )

Given some number of sampled points in the configuration space of checker's plant(), computes the "visibility graph" – two points have an edge between them if the line segment connecting them is collision free.

See CollisionChecker documentation for more information on how edge collision checks are performed.

Note that this method assumes the collision checker has symmetric behavior (i.e. checking edge (q1, q2) is the same as checking edge (q2, q1)). This is true for many collision checkers (e.g. those using LinearDistanceAndInterpolationProvider, which is the default), but some more complex spaces with non-linear interpolation (e.g. a Dubin's car) are not symmetric.

If parallelize specifies more than one thread, then the CollisionCheckerParams::distance_and_interpolation_provider for checker must be implemented in C++, either by providing the C++ implementation directly directly or by using the default provider.

Returns
the adjacency matrix, A(i,j) == true iff points.col(i) is visible from points.col(j). A is always symmetric.
Precondition
points.rows() == total number of positions in the collision checker plant.