Drake
Drake C++ Documentation
CspaceFreePolytope Class Reference

Detailed Description

This class tries to find large convex polytopes in the tangential-configuration space, such that all configurations in the convex polytopes is collision free.

By tangential-configuration space, we mean the revolute joint angle θ is replaced by t = tan(θ/2). We refer to the algorithm as C-IRIS. For more details, refer to the paper

Certified Polyhedral Decomposition of Collision-Free Configuration Space by Hongkai Dai*, Alexandre Amice*, Peter Werner, Annan Zhang and Russ Tedrake.

A conference version is published at

Finding and Optimizing Certified, Collision-Free Regions in Configuration Space for Robot Manipulators by Alexandre Amice*, Hongkai Dai*, Peter Werner, Annan Zhang and Russ Tedrake.

#include <drake/geometry/optimization/cspace_free_polytope.h>

Classes

struct  BilinearAlternationOptions
 Options for bilinear alternation. More...
 
struct  BinarySearchOptions
 Options for binary search. More...
 
struct  FindPolytopeGivenLagrangianOptions
 Options for finding polytope with given Lagrangians. More...
 
struct  FindSeparationCertificateGivenPolytopeOptions
 
class  SearchResult
 Result on searching the C-space polytope and separating planes. More...
 
class  SeparatingPlaneLagrangians
 When searching for the separating plane, we want to certify that the numerator of a rational is non-negative in the C-space region C*s<=d, s_lower <= s <= s_upper. More...
 
struct  SeparationCertificate
 This struct stores the necessary information to search for the separating plane for the polytopic C-space region C*s <= d, s_lower <= s <= s_upper. More...
 
struct  SeparationCertificateProgram
 
struct  SeparationCertificateResult
 We certify that a pair of geometries is collision free in the C-space region {s | Cs<=d, s_lower<=s<=s_upper} by finding the separating plane and the Lagrangian multipliers. More...
 

Public Types

enum  EllipsoidMarginCost { kSum, kGeometricMean }
 The cost used when fixing the Lagrangian multiplier and search for C and d in the C-space polytope {s | C*s <=d, s_lower<=s<=s_upper}. More...
 
using IgnoredCollisionPairs = std::unordered_set< SortedPair< geometry::GeometryId > >
 
- Public Types inherited from CspaceFreePolytopeBase
using IgnoredCollisionPairs = std::unordered_set< SortedPair< geometry::GeometryId > >
 

Public Member Functions

 CspaceFreePolytope (const multibody::MultibodyPlant< double > *plant, const geometry::SceneGraph< double > *scene_graph, SeparatingPlaneOrder plane_order, const Eigen::Ref< const Eigen::VectorXd > &q_star, const Options &options=Options{})
 
 ~CspaceFreePolytope () override
 
bool FindSeparationCertificateGivenPolytope (const Eigen::Ref< const Eigen::MatrixXd > &C, const Eigen::Ref< const Eigen::VectorXd > &d, const IgnoredCollisionPairs &ignored_collision_pairs, const FindSeparationCertificateGivenPolytopeOptions &options, std::unordered_map< SortedPair< geometry::GeometryId >, SeparationCertificateResult > *certificates) const
 Finds the certificates that the C-space polytope {s | C*s<=d, s_lower <= s <= s_upper} is collision free. More...
 
void AddCspacePolytopeContainment (solvers::MathematicalProgram *prog, const MatrixX< symbolic::Variable > &C, const VectorX< symbolic::Variable > &d, const Eigen::MatrixXd &s_inner_pts) const
 Adds the constraint that each column of s_inner_pts is in the polytope {s | C*s<=d}. More...
 
std::vector< SearchResultSearchWithBilinearAlternation (const IgnoredCollisionPairs &ignored_collision_pairs, const Eigen::Ref< const Eigen::MatrixXd > &C_init, const Eigen::Ref< const Eigen::VectorXd > &d_init, const BilinearAlternationOptions &options) const
 Search for a collision-free C-space polytope. More...
 
std::optional< SearchResultBinarySearch (const IgnoredCollisionPairs &ignored_collision_pairs, const Eigen::Ref< const Eigen::MatrixXd > &C, const Eigen::Ref< const Eigen::VectorXd > &d_init, const Eigen::Ref< const Eigen::VectorXd > &s_center, const BinarySearchOptions &options) const
 Binary search on d such that the C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} is collision free. More...
 
std::unique_ptr< solvers::MathematicalProgramInitializePolytopeSearchProgram (const IgnoredCollisionPairs &ignored_collision_pairs, const std::unordered_map< SortedPair< geometry::GeometryId >, SeparationCertificateResult > &certificates, bool search_s_bounds_lagrangians, MatrixX< symbolic::Variable > *C, VectorX< symbolic::Variable > *d, std::unordered_map< int, SeparationCertificate > *new_certificates=nullptr) const
 Constructs a program to search for the C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} such that this polytope is collision free. More...
 
SeparationCertificateProgram MakeIsGeometrySeparableProgram (const SortedPair< geometry::GeometryId > &geometry_pair, const Eigen::Ref< const Eigen::MatrixXd > &C, const Eigen::Ref< const Eigen::VectorXd > &d) const
 Constructs the MathematicalProgram which searches for a separation certificate for a pair of geometries for a C-space polytope. More...
 
std::optional< SeparationCertificateResultSolveSeparationCertificateProgram (const SeparationCertificateProgram &certificate_program, const FindSeparationCertificateGivenPolytopeOptions &options) const
 Solves a SeparationCertificateProgram with the given options. More...
 
Does not allow copy, move, or assignment
 CspaceFreePolytope (const CspaceFreePolytope &)=delete
 
CspaceFreePolytopeoperator= (const CspaceFreePolytope &)=delete
 
 CspaceFreePolytope (CspaceFreePolytope &&)=delete
 
CspaceFreePolytopeoperator= (CspaceFreePolytope &&)=delete
 
- Public Member Functions inherited from CspaceFreePolytopeBase
virtual ~CspaceFreePolytopeBase ()
 
const multibody::RationalForwardKinematicsrational_forward_kin () const
 Getter for the rational forward kinematics object that computes the forward kinematics as rational functions. More...
 
const std::unordered_map< SortedPair< geometry::GeometryId >, int > & map_geometries_to_separating_planes () const
 separating_planes()[map_geometries_to_separating_planes.at(geometry1_id, geometry2_id)] is the separating plane that separates geometry 1 and geometry 2. More...
 
const std::vector< CSpaceSeparatingPlane< symbolic::Variable > > & separating_planes () const
 All the separating planes between each pair of geometries. More...
 
const Vector3< symbolic::Variable > & y_slack () const
 Get the slack variable used for non-polytopic collision geometries. More...
 
 CspaceFreePolytopeBase (const CspaceFreePolytopeBase &)=delete
 
CspaceFreePolytopeBaseoperator= (const CspaceFreePolytopeBase &)=delete
 
 CspaceFreePolytopeBase (CspaceFreePolytopeBase &&)=delete
 
CspaceFreePolytopeBaseoperator= (CspaceFreePolytopeBase &&)=delete
 

Friends

class CspaceFreePolytopeTester
 

Additional Inherited Members

- Protected Types inherited from CspaceFreePolytopeBase
enum  SForPlane { kAll, kOnChain }
 When we set up the separating plane {x | a(s)ᵀx + b(s) = 0} between a pair of geometries, we need to determine which s are used in a(s) and b(s). More...
 
- Protected Member Functions inherited from CspaceFreePolytopeBase
 CspaceFreePolytopeBase (const multibody::MultibodyPlant< double > *plant, const geometry::SceneGraph< double > *scene_graph, SeparatingPlaneOrder plane_order, SForPlane s_for_plane_enum, const Options &options=Options{})
 Constructor. More...
 
template<typename T >
void CalcSBoundsPolynomial (const VectorX< T > &s_lower, const VectorX< T > &s_upper, VectorX< symbolic::Polynomial > *s_minus_s_lower, VectorX< symbolic::Polynomial > *s_upper_minus_s) const
 Computes s-s_lower and s_upper - s as polynomials of s. More...
 
int GetSeparatingPlaneIndex (const SortedPair< geometry::GeometryId > &pair) const
 Returns the index of the plane which will separate the geometry pair. More...
 
const symbolic::Variablesget_s_set () const
 
const geometry::SceneGraph< double > & scene_graph () const
 
const std::map< multibody::BodyIndex, std::vector< std::unique_ptr< CIrisCollisionGeometry > > > & link_geometries () const
 
SeparatingPlaneOrder plane_order () const
 
const std::unordered_map< SortedPair< multibody::BodyIndex >, std::array< VectorX< symbolic::Monomial >, 4 > > & map_body_to_monomial_basis_array () const
 Maps a pair of body (body1, body2) to an array of monomial basis monomial_basis_array. More...
 
bool with_cross_y () const
 Check Options::with_cross_y for more details. More...
 
const std::unordered_map< SortedPair< multibody::BodyIndex >, std::vector< int > > & map_body_pair_to_s_on_chain () const
 For a pair of bodies body_pair, returns the indices of all s on the kinematics chain from body_pair.first() to body_pair.second(). More...
 
VectorX< symbolic::VariableGetSForPlane (const SortedPair< multibody::BodyIndex > &body_pair, SForPlane s_for_plane_enum) const
 Returns a vector of s variable used in a(s), b(s), which parameterize the separating plane {x | a(s)ᵀx+b(s) = 0}. More...
 
void SolveCertificationForEachPlaneInParallel (const std::vector< int > &active_plane_indices, const std::function< std::pair< bool, int >(int)> &solve_plane_sos, Parallelism parallelism, bool verbose, bool terminate_at_failure) const
 For each pair of geometries, solve the certification problem to find their separation plane in parallel. More...
 
int GetGramVarSizeForPolytopeSearchProgram (const std::vector< PlaneSeparatesGeometries > &plane_geometries_vec, const IgnoredCollisionPairs &ignored_collision_pairs, const std::function< int(const symbolic::RationalFunction &rational, const std::array< VectorX< symbolic::Monomial >, 4 > &monomial_basis_array)> &count_gram_per_rational) const
 Get the total size of all the decision variables for the Gram matrices, so as to search for the polytope with given Lagrangian multipliers. More...
 

Member Typedef Documentation

◆ IgnoredCollisionPairs

using IgnoredCollisionPairs = std::unordered_set<SortedPair<geometry::GeometryId> >

Member Enumeration Documentation

◆ EllipsoidMarginCost

The cost used when fixing the Lagrangian multiplier and search for C and d in the C-space polytope {s | C*s <=d, s_lower<=s<=s_upper}.

We denote δᵢ as the margin between the i'th face C.row(i)<=d(i) to the inscribed ellipsoid.

Enumerator
kSum 

Maximize ∑ᵢδᵢ

kGeometricMean 

Maximize the geometric mean power(∏ᵢ (δᵢ + ε), 1/n) where n is C.rows(), ε=FindPolytopeGivenLagrangianOptions.ellipsoid_margin_epsilon.

Constructor & Destructor Documentation

◆ CspaceFreePolytope() [1/3]

CspaceFreePolytope ( const CspaceFreePolytope )
delete

◆ CspaceFreePolytope() [2/3]

◆ CspaceFreePolytope() [3/3]

CspaceFreePolytope ( const multibody::MultibodyPlant< double > *  plant,
const geometry::SceneGraph< double > *  scene_graph,
SeparatingPlaneOrder  plane_order,
const Eigen::Ref< const Eigen::VectorXd > &  q_star,
const Options options = Options{} 
)
Parameters
plantThe plant for which we compute the C-space free polytopes. It must outlive this CspaceFreePolytope object.
scene_graphThe scene graph that has been connected with plant. It must outlive this CspaceFreePolytope object.
plane_orderThe order of the polynomials in the plane to separate a pair of collision geometries.
q_starRefer to RationalForwardKinematics for its meaning.
Note
CspaceFreePolytope knows nothing about contexts. The plant and scene_graph must be fully configured before instantiating this class.

◆ ~CspaceFreePolytope()

~CspaceFreePolytope ( )
override

Member Function Documentation

◆ AddCspacePolytopeContainment()

void AddCspacePolytopeContainment ( solvers::MathematicalProgram prog,
const MatrixX< symbolic::Variable > &  C,
const VectorX< symbolic::Variable > &  d,
const Eigen::MatrixXd &  s_inner_pts 
) const

Adds the constraint that each column of s_inner_pts is in the polytope {s | C*s<=d}.

◆ BinarySearch()

std::optional<SearchResult> BinarySearch ( const IgnoredCollisionPairs ignored_collision_pairs,
const Eigen::Ref< const Eigen::MatrixXd > &  C,
const Eigen::Ref< const Eigen::VectorXd > &  d_init,
const Eigen::Ref< const Eigen::VectorXd > &  s_center,
const BinarySearchOptions options 
) const

Binary search on d such that the C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} is collision free.

We scale the polytope {s | C*s<=d_init} about its center s_center and search the scaling factor.

Precondition
s_center is in the polytope {s | C*s<=d_init, s_lower<=s<=s_upper}

◆ FindSeparationCertificateGivenPolytope()

bool FindSeparationCertificateGivenPolytope ( const Eigen::Ref< const Eigen::MatrixXd > &  C,
const Eigen::Ref< const Eigen::VectorXd > &  d,
const IgnoredCollisionPairs ignored_collision_pairs,
const FindSeparationCertificateGivenPolytopeOptions options,
std::unordered_map< SortedPair< geometry::GeometryId >, SeparationCertificateResult > *  certificates 
) const

Finds the certificates that the C-space polytope {s | C*s<=d, s_lower <= s <= s_upper} is collision free.

Parameters
CThe C-space polytope is {s | C*s<=d, s_lower<=s<=s_upper}
dThe C-space polytope is {s | C*s<=d, s_lower<=s<=s_upper}
ignored_collision_pairsWe will ignore the pair of geometries in ignored_collision_pairs.
[out]certificatesContains the certificate we successfully found for each pair of geometries. Notice that depending on options, the program could search for the certificate for each geometry pair in parallel, and will terminate the search once it fails to find the certificate for any pair.
Return values
successIf true, then we have certified that the C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} is collision free. Otherwise success=false.

◆ InitializePolytopeSearchProgram()

std::unique_ptr<solvers::MathematicalProgram> InitializePolytopeSearchProgram ( const IgnoredCollisionPairs ignored_collision_pairs,
const std::unordered_map< SortedPair< geometry::GeometryId >, SeparationCertificateResult > &  certificates,
bool  search_s_bounds_lagrangians,
MatrixX< symbolic::Variable > *  C,
VectorX< symbolic::Variable > *  d,
std::unordered_map< int, SeparationCertificate > *  new_certificates = nullptr 
) const

Constructs a program to search for the C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} such that this polytope is collision free.

This program treats C and d as decision variables, and searches for the separating planes between each pair of geometries. Note that this program doesn't contain any cost yet.

Parameters
certificatesThe return of FindSeparationCertificateGivenPolytope().
search_s_bounds_lagrangiansSet to true if we search for the Lagrangian multiplier for the bounds s_lower <=s<=s_upper.
[out]CThe C-space polytope is parameterized as {s | C*s<=d, s_lower<=s<=s_upper}.
[out]dThe C-space polytope is parameterized as {s | C*s<=d, s_lower<=s<=s_upper}.
[out]new_certificatesThe new certificates to certify the new C-space polytope {s | C*s<=d, s_lower<=s<=s_upper} is collision free. If new_certificates=nullptr, then we don't update it. This is used for testing.

◆ MakeIsGeometrySeparableProgram()

SeparationCertificateProgram MakeIsGeometrySeparableProgram ( const SortedPair< geometry::GeometryId > &  geometry_pair,
const Eigen::Ref< const Eigen::MatrixXd > &  C,
const Eigen::Ref< const Eigen::VectorXd > &  d 
) const

Constructs the MathematicalProgram which searches for a separation certificate for a pair of geometries for a C-space polytope.

Search for the separation certificate for a pair of geometries for a C-space polytope {s | C*s<=d, s_lower<=s<=s_upper}.

Exceptions
anerror if this geometry_pair doesn't need separation certificate (for example, they are on the same body).

◆ operator=() [1/2]

CspaceFreePolytope& operator= ( CspaceFreePolytope &&  )
delete

◆ operator=() [2/2]

CspaceFreePolytope& operator= ( const CspaceFreePolytope )
delete

◆ SearchWithBilinearAlternation()

std::vector<SearchResult> SearchWithBilinearAlternation ( const IgnoredCollisionPairs ignored_collision_pairs,
const Eigen::Ref< const Eigen::MatrixXd > &  C_init,
const Eigen::Ref< const Eigen::VectorXd > &  d_init,
const BilinearAlternationOptions options 
) const

Search for a collision-free C-space polytope.

{s | C*s<=d, s_lower<=s<=s_upper} through bilinear alternation. The goal is to maximize the volume the C-space polytope. Since we can't compute the polytope volume in the closed form, we use the volume of the maximal inscribed ellipsoid as a surrogate function of the polytope volume.

Parameters
ignored_collision_pairsThe pairs of geometries that we ignore when searching for separation certificates.
C_initThe initial value of C.
d_initThe initial value of d.
optionsThe options for the bilinear alternation.
Return values
resultsStores the certification result in each iteration of the bilinear alternation.

◆ SolveSeparationCertificateProgram()

std::optional<SeparationCertificateResult> SolveSeparationCertificateProgram ( const SeparationCertificateProgram certificate_program,
const FindSeparationCertificateGivenPolytopeOptions options 
) const

Solves a SeparationCertificateProgram with the given options.

Returns
result If we find the separation certificate, then result contains the separation plane and the Lagrangian polynomials; otherwise result is empty.

Friends And Related Function Documentation

◆ CspaceFreePolytopeTester

friend class CspaceFreePolytopeTester
friend

The documentation for this class was generated from the following file: